2023 U.S. Energy Efficiency Standards for Residential AC's and Heat Pumps

- The Energy Policy and Conservation Act (ECPA) of 1975 first gave the U.S.
 Department of Energy (DOE) authority to develop, revise, and implement minimum energy conservation standards for HVAC equipment.
- » The National Appliance Energy Conservation Act of 1987 established the first minimum efficiency requirements for central air-conditioning and heat pump equipment sold in the United States.
 - » These first became effective September 1st, 1990

MINIMUM US FEDERAL EFFICIENCY STANDARDS ENACTED BY NAECA OF 1987

Equipment Type	Minimum Efficiency	Effective Date
Residential Central Air Conditioners (Split Systems)	10 SEER	1/1/1992
Residential Heat Pumps (Split Systems)	10 SEER / 6.8 HSPF	1/1/1992
Residential Central Air Conditioners (Packaged Systems)	9.7 SEER	1/1/1993
Residential Heat Pumps (Packaged Systems)	9.7 SEER / 6.6 HSPF	1/1/1993
Residential Furnaces	78% AFUE	1/1/1992
Mobile Home Furnaces	75% AFUE	9/1/1990

- The U.S. Department of Energy (DOE) is tasked with reviewing efficiency and testing standards every 6 years. They must then provide guidance on adjusting standards or maintaining them.
- » The next major milestone took place in 2000 when the efficiency standard was raised from 10-SEER to 13-SEER
 - » This became effective on January 1st, 2006

- Starting not long after 2010 the U.S. Department of Energy (DOE) began to look at the United States from a more regional viewpoint. This allowed for them to factor in different climate zones within the United States.
- » The country was split into 3 "Regions"
 - » North
 - » South
 - » Southwest

» The Regional Efficiency Standards became effective January 1st, 2015

Zones	Split A/C	Packaged A/C	Split Heat Pumps	Packaged Heat Pumps	Gas Furnaces (Weatherized)	Gas Furnaces (Non- Weatherized)	Oil Furnaces (Non- Weatherized)
North	13 SEER	14 SEER	14 SEER 8.2 HSPF	14 SEER 8 HSPF	14 SEER 81% AFUE	90% AFUE	83% AFUE
Southern	14 SEER	14 SEER	14 SEER 8.2 HSPF	14 SEER 8 HSPF	14 SEER 81% AFUE	80% AFUE	83% AFUE
Southwestern	14 SEER / 12.2 EER < 45,000 BTU/H 14 SEER / 11.7 EER ≥ 45,000 BTU/H	14 SEER / 11 EER	14 SEER 8.2 HSPF	14 SEER 8 HSPF	14 SEER 81% AFUE	80% AFUE	83% AFUE

2023 Energy Efficiency Standards

- The most recent change to the minimum efficiency standards for Air-Conditioners and Heat Pumps will focus on two key areas:
 - » Energy Efficiency
 - » Testing Procedures
- » The regions throughout the United States will stay the same.

2023 Split AC Standards

- » Based on 2022 testing standards split air-conditioners will have the following minimum efficiency requirements
- » North Region 14.0 SEER
- » South Region 15.0 SEER < 45,000-BTUH 14.5 SEER \ge 45,000-BTUH
- » Southwest Region 15.0 SEER | 12.2 EER* < 45,000-BTUH 14.5 SEER | 11.7 EER* \geq 45,000-BTUH

* 10.2 EER is SEER ≥ 16.0

2023 Energy Efficiency Standards

2023 Split Heat Pump Standards

2023 Small Package Units

- » Small Packaged Products (SPP) are single phase residential use packaged units.
 - » Straight Cooling
 - » Heat Pump
 - » Gas/Electric
- » There has been no change to the efficiency standards to these from previous standards.
- » Nationally 14 SEER | 8.0 HSPF | 81 AFUE

2023 Small Package Units

Previously Energy Efficiency has been tested and certified using DOE's M testing method.

~	SEED -	Cooling Output Over a Typical Cooling Season
	JLLN -	Energy it Uses over the Season

» EER = Cooling Output Total Energy Usage

		Heating Output Over a Typical Heating Season
))	HSPF –	Energy it Uses over the Season

- » New for 2023 is the M1 testing method, developed to better represent actual field conditions.
- » SEER2 | EER2 | HSPF2
- » Major Changes
 - » Minimum Static Pressure has increased
 - » Increased Fan Power Input on AC/Coil-Only testing
 - » Increased HSPF testing conditions, lowering the zero-load testing temperature from 60*F to 55*F
 - » Increased consideration for Variable Capacity systems to reflect their enhanced capabilities

_

_

10

Split System Heat Pump – 2023 National Standards [†]									
System Type	National Efficiency Standard								
	New SEER and HSPF	New SEER2 and HSPF2							
Split System HPs	15.0 SEER and 8.8 HSPF	14.3 SEER2 and 7.5 HSPF2							

Packaged Systems – 2023 National Standards											
System Type	National Efficiency Standard										
	New SEER and HSPF	New SEER2 and HSPF2									
Packaged ACs, Heat Pumps, Gas Electrics and Dual-Fuel HPs	14.0 SEER and 8.0 HSPF	13.4 SEER2 and 6.7 HSPF2									

Energy Savings

7-8% increase over previous minimums 300 million KWH saved over 30 years

Savings of \$38 billion in utility costs

Manufacturer Compliance

Some previous standard products may not be sold on or after January 1, 2023

All products will require re-testing with new standards

70% of current products do not meet new minimum standards

* All products built on/after January 1, 2023, must adhere to new minimum efficiency standards.

» Distributors | Contractors

- It is a violation to knowingly sell to and/or install for an end user a central air conditioner subject to regional standards with the knowledge that such product will be installed in violation of any regional standard applicable to the product (10 CFR 429.102(c) Violations of regional standards)
- » DOE enforces regional standards
 - » If in violation, installer should replace the non-compliant ACs at no cost to consumer
 - » Manufacturers/Distributors may be unable to do business with routine violators

- » In the North Region
 - » Air Conditioners manufactured prior to January 1, 2023, may continue to be sold and installed.
 - » Must be 13.0 SEER
 - » Heat Pumps manufactured prior to January 1, 2023, may continue to be sold and installed.
 - » Must be 14.0 SEER | 8.2 HSPF

- » In the South Region
 - » Air Conditioners manufactured prior to January 1, 2023, may continue to be sold and installed.
 - » If they meet the new 2023 M testing standards according to the coilonly indoor unit match. Use FTC label to verify compliance.

» FTC labels must show the least efficient match-up which is generally the coil-only match-up to the outdoor unit.

AC Product Class	SEER
< 45,000 BTUH	15.0 SEER
≥ 45,000 BTUH	14.5 SEER

- » In the South Region
 - » Heat Pumps manufactured prior to January 1, 2023, may continue to be sold and installed.
 - » Must be 14.0 SEER 8.2 HSPF

» In the Southwest Region

AZ

NM

NV

CA

- » Air Conditioners manufactured prior to January 1, 2023, may continue to be sold and installed.
 - » If they meet the new 2023 M testing standards according to the coilonly indoor unit match. Use FTC label to verify compliance.

» FTC labels must show the least efficient match-up which is generally the coil-only match-up to the outdoor unit.

AC Product Class	SEER	EER
< 45,000 BTUH	15.0	12.2
≥ 45,000 BTUH	14.5	11.7

» In the Southwest Region

AZ

NN

GA

- » Heat Pumps manufactured prior to January 1, 2023, may continue to be sold and installed.
 - » Must be 14.0 SEER 8.2 HSPF

NM

The Future is Here

- » Be prepared for what is coming quickly to our industry
- » Be capable of providing clear guidance to your customers
- » Know what can and cannot be sold and where
- » Get ready to learn new products

2023 Goodman Model Changes

202 <u>3 Product Nomenclature</u>												
New	G S	Х	N 4	S	3 6	1	0	Α	А			
							*		*			
	1 2	3	4 5	6	78	9	10	11	12			
Brand	_											
G Goodman									Minor			
A Amana												
V GMC									Major Revisi			
	_											
Product Category	/								Variati			
S Split System R-	-410A						In	te mati	ional - K Kuw			
L Split System Ra	32								Sea Coast			
D Split System D	ry Charge								F 1			
Halt Turns		- 11					1 200	12201	Electri			
Unit Type							1 208	/230 V	, I Phase, 60			
7 Heat Dump							2 220	/240 V	, I Phase, 50			
							5 200	/230 V	, 5 Plidse, 00			
Feature								No	ominal Capac			
N or B Base						:	12 - 1.OT	on	36 - 3.0 To			
H High Spec (Pre	emium)					:	18-1.5T	ons	42 - 3.5 To			
C 2-Stage Comm	unicating					1	24 - <mark>2.0</mark> T	ons	48 - 4.0 To			
V Inverters						3	30 - 2.5 T	ons	60 - <mark>5.0</mark> To			
SEER2									Sales Regi			
13.4 - 13.7 = 3	14.6-15.5 =	5	17.6-18.5 = 8				N	North	ı			
13.8 - 14.5 = 4	15.6-16.5 =	6	18.6-19.5 = 9				S	South	east & North			
	16.6-17.5 =	7	19.6-20.5 = 0				0	All Re	gions			

2023 Goodman Model Changes

			2023	Prod	uct	Non	nencla	ature						-	
New	A	M	S	т	3	6	в	U	1	4	0 0	A	А	Current	New
			U			-				553.9	• •	<u>§</u>		ARUF	AMRF36BU1400AA
	1	2	3	4	5	6	7	8	9	10	11 1	2 13	14	ASPT	AMST36BU1400AA
Product											a can be seen			AVPTC	AMVT36BP1400AA
A Corporate Ai	ir Handler												Minor Rev	AVPEC	AMVE36BP1400AA
D Daikin Air Ha	andler												A	AWUF	AWSF24MU1408AA
													Major Revision	AWUT	AWST36LU1405AA
													A	ACNF	ACST36MN1403AA
Application												El	ectric Heat KW		
C Ceiling Mou	inted														
M Multi-Positi	onal												Refrigerant		
W Wall Mounte	ed												3 R32	Curre	ent to New
													4 R410A	Mode	Comparison
													6 R410A or R22	inout	companio
Motor													Electrical		
R PSC											1 208	/230 V,	1 Phase, 60 Hz	1	
S MS-ECM											2 220	/240 V,	1 Phase, 50 Hz	r	
V VS-ECM Com	municating	B									3 208	/230 V,	3 Phase, 60 Hz		
Expansion Dev	ice	21												•	
E Electronic Ex	pansion Va	lve											Cabinet		
F Flowrator													N Uncased		
T Expansion Va	alve												P Painted	13.	
													U Unpainted		0
Nominal Capac	ity												Cabinet Width		. 0 .
12 - 1.0 Ton		36	5-3.0T	ons					HC*	Series	HM	• Series	HW* Series		
18 - 1.5 Tons		42	2 - 3.5 T	ons					S - 3	7.25"	1	8 - 17.5	S - 20.2"	8	
24 - 2.0 Tons		48	3-4.0T	ons					M-4	43.25"		C - 21.0	M -		
30 - 2.5 Tons		60) - 5.0 T	ons					L-49	9.25"	1) - 24.5	L - 36.0"	:	00

GSXH5 Series AC

- » High Spec 15.2 SEER2 model
 - » Replacing the existing single stage 16 SEER
- » Will incorporate a new fan system for enhanced airflow
- » Mix of 5mm and 7mm condenser coils
- » New Copeland ZP**K7 scroll compressors

GSXH5 Series

	Current Design		New 2023 Design					
16 SEER Model	16 SEER Coil Specs	16 SEER Compress or	New 15 SEER Model	Coil Specs	New Compressor	Other Changes		
GSX160181	5mm 1R 485	ZP14K5	GSXH501810	5mm 1R 385	ZP14K7	New CFS		
GSX160241	5mm 1R 485	ZP20K5	GSXH502410	5mm 1R 485	ZP20K7	New CFS		
GSX160311	5mm 1R 605	ZP24K5	GSXH503110	5mm 1R 605	ZP24K7	New CFS		
GSX160371	5mm 1R 545	ZP31K6	GSXH503610	5mm 1R 605	ZP29K7	New CFS		
GSX160421	5mm 1R 54S	ZP34K5	GSXH504210	7mm 2R 40/40S	ZP34K7	New CFS		
GSX160481	5mm 1R 60S	ZP36K5	GSXH504810	7mm 2R 40/40S	ZP40K7	New CFS		
GSX160601	3/8" 2R 36/36S	ZP44K5	GSXH506010	7mm 2R 46/46S	ZPS51K7	New CFS, stud mount motor w/ swept fan blade		

GSXH506010 Two Stage Compressor

GSZH5 Series Heat Pump

- » High Spec 15.2 SEER2 model
 - » Replacing the existing single stage 16 SEER
- » Will incorporate a new fan system for enhanced airflow
- » Mix of 5mm and 7mm condenser coils
- » New Copeland ZP**K7 scroll compressors

GSXH5 Series

OD Model	Compressor	Chassis Size	Coil Diameter	Rows	Steps	Circuits	Coil Length [in]	Coil Height [in]	Hairpins
GSZH501810	ZP14K7	29"	5mm	1	60	8	82.5	37.8	30
GSZH502410	ZP20K7	35"	5mm	1	54	10	107.2	34	27
GSZH503010	ZP25K7	35"	5mm	1	60	10	107.2	37.8	30
GSZH503610	ZP31K7	35"	5mm	1	60	12	107.2	37.8	30
GSZH504210	ZP34K7	35"	5mm	2	54/54	12	107.2/103	34	54
GSZH504810	ZP40K7	35"	7mm	2	40/40	10	107.8/103.3	34.6	40
GSZH506010	ZPS51K7	35"	7mm	2	46/46	10	107.8/103.3	39.8	46

GSZH506010 Two Stage Compressor

HFC Phase Down

- » Under the AIM Act included in the Consolidated Appropriations Act of 2021, the EPA has been directed to phase down production and consumption of HFC's by 85% over the next 15 years
- » This will most likely begin to result in the adoption of new, lower GWP refrigerants in the HVAC industry over the next few years.
- » While this is still very much "up in the air", I would expect OEM equipment containing new refrigerants to begin hitting the market 2024 to 2025.

HFC Phase Down

Questions?

